Стабилизатор сетевого напряжения схема


Импульсный стабилизатор переменного напряжения

Схема импульсного стабилизатора переменного напряжения 220V (10+)

Импульсный стабилизатор переменного напряжения

Оглавление :: ПоискТехника безопасности :: Помощь

Проблемы стабилизации сетевого напряжения

Качество электроснабжения в наших изношенных и перегруженных сетях оставляет желать лучшего. Напряжение может изменяться в широких пределах, что не полезно для бытовых приборов. Некоторые из них просто не могут работать в таких условиях, другие - быстрее выходят из строя. Для решения проблемы обычно используются стабилизаторы переменного напряжения.

Наиболее популярными в настоящее время являются стабилизаторы, работа которых основана на анализе входного напряжения и переключении обмоток трансформатора таким образом, чтобы выходное напряжение поддерживалось в допустимых пределах. Если сетевое напряжение изменяется редко, то такой подход идеален. Действительно, система адаптировалась к определенному входному напряжению и работает себе спокойно. Если напряжение изменилось, то стабилизатор переключается и продолжает работать. Но в наших сетях напряжение зачастую скачет. В этом случае стабилизаторы, выполненные по такой технологии, начинают постоянно переключаться. Каждое переключение - это стресс для самого стабилизатора, для Ваших приборов, подключенных к нему (при переключении возникает резкий перепад напряжения и короткое полное прерывание тока) и для Вас самих (переключение обычно сопровождается морганием света).

Вашему вниманию подборки материалов:

Конструирование источников питания и преобразователей напряжения Разработка источников питания и преобразователей напряжения. Типовые схемы. Примеры готовых устройств. Онлайн расчет. Возможность задать вопрос авторам

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Долго такие частые переключения стабилизатор, как правило, не выдерживает. Не выдержат их и бытовые приборы, да и люди. Для решения проблемы в более совершенных стабилизаторах применяют твердотельные реле, которые не имеют контактов, подверженных износу, и дополнительные способы стабилизации, исключающие скачки в момент переключения. Но совершенные стабилизаторы получаются дорогими.

К тому же, такой стабилизатор не улучшает форму сетевого напряжения. Если форма искажена из-за перегрузки сетей, то и на Ваши бытовые приборы напряжение поступит искаженной формы.

Альтернативой может стать выпрямление сетевого напряжения, стабилизация постоянного напряжения на уровне 310 вольт, преобразование постоянного напряжения в синусоиду. При таком подходе можно обеспечить хорошее качество выходного напряжения вне зависимости от качества входного. На вход такого стабилизатора можно подавать меандр, псевдосинусоиду, треугольное напряжение, просто шум. Частота входного напряжения тоже значения не имеет (в определенных пределах). Такой стабилизатор можно использовать для преобразования частоты, если есть необходимость получить 50 Гц из 60 или из 300, или наоборот.

Схема состоит из двух блоков. Первый блок выше голубой линии - это преобразователь постоянного напряжения в синусоиду, второй ниже - это выпрямитель и стабилизатор постоянного напряжения, построенный на основе схемы корректора коэффициента мощности. Точки верхней и нижней схем, помеченные одинаковыми буквами, должны быть соединены.

Маркировка элементов схем сохранена такой же, как в статьях, посвященных этим схемам, чтобы было понятнее. Так что над голубой линией есть R3 и под тоже есть R3.

По следующим ссылкам расположены статьи, поясняющие работу блоков схемы:

Нижний блок: Устройство и номиналы элементов корректора коэффициента мощности.

Верхний блок: Силовой источник синусоидального напряжения.

В схему источника синусоидального напряжения внесены следующие изменения: Во-первых, применен более совершенный и надежный генератор синусоидальных колебаний. VD1, VD2 - стабилитроны на 3.6 вольта, включенные встречно последовательно. Во-вторых, исключена схема выпрямления и фильтрации входного напряжения, так как нижний блок уже выдает постоянное стабильное напряжение. В-третьих, исключена схема выработки низкого напряжения для питания схемы управления. Эта схема реализована в нижнем блоке, напряжение от нее подается на схему управления, в том числе, верхнего блока.

Мощность изделия ограничена мощностью его составных частей. Как увеличить мощность этих устройств, читайте по ссылке.

(читать дальше...) :: (в начало статьи)

Оглавление :: ПоискТехника безопасности :: Помощь

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!Задать вопрос. Обсуждение статьи. [14] сообщений.

Здравствуйте! Веду кабель ВББШВ 10 мм2 общ. длиной 40 метров от щитка дома до бани. У дома плохо сделано заземление. Могу ли я взять вместо кабеля 2*10 кабель 3*10 и одну его жилу использовать для подводки к щитку дома хорошо сделанного заземления на щитке у бани? Заранее признателен. Читать ответ...

Здравствуйте. Собираю комлект устройств. Именно - резонансный повышающий преобразователь 12/300, преобразователь постоянного напряжения в синусоиду. Поясните, нужен ли между ними стабилизатор постоянного напряжения, построенный на основе схемы корректора коэффициента мощности, чтобы на выходе было стабилизированное 220? Ведь никаких обратных связей в схеме не предусмотренно. Б Читать ответ...

Здравствуйте. Для проведения экспериментов нам требуется источник синусоидального сигнала 100 и 200 (220)В, 20кГц. До 10А. Могу ли я взять за основу приведенные на Вашем сайте материалы для его изготовления? Важно получить такую синусоиду, чтобы по фигурам Лиссажу можно было определить коэфф. мощности, максимально точно посчитать косинус фи. В качестве первичного источника рас Читать ответ...

Уважаемые любители электронных самоделок, изготовил я печатные платы прямо на принтере р220 для импульсного стабилизатора переменного напряжения, если кому интересно могу поделится опытом изготовления плат на принтере. Спаял на плате детали и думал что всё это начнёт сразу работать. Но оказалась, что частота генератора не 50 герц а 150 с теми номиналами С4.С6 по 0.1 мкФ. Пришл Читать ответ...

Цитата: 'На вход такого стабилизатора можно подавать меандр, псевдосинусоиду, треугольное напряжение, просто шум. Частота входного напряжения тоже значения не имеет (в определенных пределах)' А какой диапазон напряжений этот стабилизатор может стабилизировать? допустим если я на вход дам 120В переменного напряжение, на выходе получу 220В синус? Заранее благодарю Читать ответ...

Еще статьи

Бесперебойник своими руками. ИБП, UPS сделать самому. Синус, синусоида... Как сделать бесперебойник самому? Чисто синусоидальное напряжение на выходе, при...

Инвертор, преобразователь, чистая синусоида, синус... Как получить чистую синусоиду 220 вольт от автомобильного аккумулятора, чтобы за...

Питание светодиода. Драйвер. Светодиодный фонарь, фонарик. Своими рука... Включение светодиодов в светодиодном фонаре....

Преобразователь однофазного в трехфазное. Конвертер одной фазы в три. ... Схема преобразователя однофазного напряжения в трехфазное....

Зарядное устройство. Импульсный автомобильный зарядник. Зарядка аккуму... Схема импульсного зарядного устройства. Расчет на разные напряжения и токи....

Повышающие переменное, постоянное напряжение бестрансформаторные преоб... Повышение напряжения без трансформатора. Умножители. Рассчитать онлайн. Преобраз...

Тиристорное переключение нагрузки, коммутация (включение / выключение)... Применение тиристоров в качестве реле (переключателей) напряжения переменного то...

Изготовление дросселя, катушки индуктивности своими руками, самому, са... Расчет и изготовление катушки индуктивности, дросселя. Типовые электронные схемы...

gyrator.ru

Однофазный стабилизатор напряжения 220В. Схема и описание

Зачастую для безопасного использования, например, телевизора, как правило, в сельской местности, нужен однофазный стабилизатор напряжения 220В, который при сильном понижении напряжения в электросети выдает на своем выходе номинальное выходное напряжение 220 вольт.

Помимо этого, при эксплуатации большинства типов бытовой электронной техники желательно использовать такой стабилизатор напряжения, который не создает изменений в синусоиде выходного напряжения. Схемы аналогичных стабилизаторов на 220 вольт приводятся во многих журналах по радиоэлектронике.

В данной статье приведем пример одного из вариантов подобного устройства. Схема стабилизатора в зависимости от фактического напряжения в сети имеет 4 диапазона автоматической установки выходного напряжения. Это способствовало значительному расширению границ стабилизации 160…250 вольт. И при всем при этом напряжение на выходе обеспечивается в пределах нормы (220В +/- 5%).

Описание работы однофазного стабилизатора напряжения 220 вольт

В электрическую схему устройства входят 3 пороговых блока, выполненные по принципу делителя напряжения, состоящие из стабилитрона и резисторов (R2-VD1-R1, VD5-R3-R6, R5-VD6-R6). Так же в схеме имеются 2 транзисторных ключа VT1 и VT2, которые управляют электромагнитными реле К1 и К2.

Диоды VD2 и VD3 и фильтрующий конденсатор С2 образуют источник постоянного напряжения для всей схемы. Емкости С1 и С3 предназначены для гашения незначительных скачков напряжения в сети. Конденсатор С4 и сопротивление R4 — “искрогасительные” элементы. Для предотвращения выбросов напряжения самоиндукции, в обмотках реле при их отключении в схему добавлены два диода VD4 и VD7.

При безупречной работе трансформатора и пороговых блоков, каждый из 4-х диапазонов регулирования создавал бы интервал напряжения от 198 до 231 вольт, а вероятное сетевое напряжение могло бы находиться в районе от 140…260 вольт.

Тем не менее, в действительности нужно брать во внимание разброс параметров радиодеталей и нестабильность коэффициента трансформации трансформатора при разных нагрузках. В связи с этим у всех 3-х пороговых блоков диапазон выходного напряжения уменьшены по отношению к выходному напряжению: 215±10 вольт. Соответственно сузился и интервал колебания на входе до 160…250 вольт.

Этапы работы стабилизатора:

1. Когда напряжение в электросети меньше 185 вольт, на выходе выпрямителя напряжение мало, для того чтобы сработал один из пороговых блоков. В этот момент контактные группы обоих реле находятся, так как указано на принципиальной схеме. Напряжение на нагрузке равно напряжению сети плюс напряжение вольтодобавки, снимаемое с обмоток II и III трансформатора Т1.

2. Если же напряжение в сети находится в диапазоне 185…205 вольт, то стабилитрон VD5 находится в открытом состоянии. Ток идет через реле К1, стабилитрон VD5 и сопротивления R3 и R6. Этого тока не хватает для того чтобы сработало реле К1. Из-за падения напряжения на R6 происходит открытие транзистора VT2. Этот транзистор в свою очередь включает реле К2 и контактная группа К2.1 переключает обмотку II (вольтодобавка)

3. Если же напряжение в сети находится в диапазоне 205…225 вольт, то в открытом состоянии уже находится стабилитрон VD1. Это приводит к открытию транзистора VT1, по причине этого отключается второй пороговый блок и соответственно транзистор VT2. Реле К2 отключается. В тоже время включается реле К1 и контактной группой К1.1. переходит в другое положение, при котором обмотки II и III не задействованы и поэтому на выходе напряжение будет такое же как и на входе.

4. Если же напряжение в сети находится в диапазоне 225…245 вольт открывается стабилитрон VD6. Это способствует активации третьего порогового блока, что приводит к открытию обоих транзисторных ключей. Оба реле включены. Сейчас уже к нагрузки подключена обмотка III трансформатора Т1, но в противофазе с сетевым напряжением (“минусовая” вольтодобавка). На выходе в данном случае также будет напряжение в районе 205…225 вольт.

При настройке диапазона регулирования нужно тщательно подобрать стабилитроны, поскольку, как известно, они могут значительно отличаться разбросом напряжения стабилизации.

Вместо КС218Ж (VD5) возможно применить стабилитроны КС220Ж. Данный стабилитрон непременно должен быть с двумя анодами, поскольку в интервале сетевого напряжения 225…245 вольт, когда стабилитрон VD6 открывается, открываются и оба транзистора, цепь R3 — VD5 шунтирует сопротивление R6 порогового блока R5-VD6-R6. Для ликвидации шунтирующего воздействия, стабилитрон VD5 должен быть с двумя анодами.

Стабилитрона VD5 на напряжение не более 20В. Стабилитрон VD1 — КС220Ж (22 В); возможно собрать цепь из двух стабилитронов — Д811 и Д810. Стабилитрон КС222Ж (VD6) на 24 вольт. Его возможно поменять на цепь из стабилитронов Д813 и Д810. Транзисторы из серии КТ3102. Реле К1 и К2 — РЭН34, паспорт ХП4.500.000-01.

Трансформатор собран на магнитопроводе ОЛ50/80-25 из стали Э360 (или Э350). Лента толщиной — 0,08 мм. Обмотка I — 2400 витков намотанных проводом ПЭТВ-2 0,355 (для номинального напряжения 220В) . Обмотки II и III равные, содержат каждая по 300 витков провода ПЭТВ-2 0,9 (13,9 В).

Настраивать стабилизатор необходимо при подключенной нагрузке, для того чтобы была учтена нагрузка на трансформатора Т1.

www.joyta.ru

Схема релейного стабилизатора напряжения на транзисторах

Нередко для питания, например, телевизоров, особенно в сельской местности, необходим стабилизатор, который обеспечивает номинальное выходное напряжение при глубоком снижении напряжения в сети. Кроме этого, для питания mhoimx видов бытовой электронной аппаратуры предпочтителен стабилизатор, не вносящий искажений синусоидальной формы выходного напряжения Стабилизатор имеет четыре ступени регулирования выходного напряжения. Это позволило существенно расширить зону стабилизации — 160.. 250 В. При этом выходное напряжение остается в пределах нормативов на напряжение питания телевизионных приемников цветного изображения.

Схема стабилизатора представлена на рис. 9.4. В электронный блок прибора входят два ключа на транзисторах VT1 и VT2, коммутирующие реле К1 и К2 и три пороювых устройства, каждое из которых представляет собой делитель напряжения из резисторов и стабилитрона. Первое пороговое устройство — R2, VD3, R3, второе — VD5, R4, R6, третье — R5, VD6, R6 Блок управления питается от выпрямителя на диодах VD1 и VD2 с фильтрующим конденсатором С2. Конденсаторы СЗ и С4 устраняют кратковременные изменения (выбросы) сетевого напряжения. Резистор R1 и конденсатор С1 — «искрогасительная» цепь. Диоды VD4 и VD7 защищают транзисторы от напряжения самоиндукции обмоток реле, которое возникает при закрывании транзисторного ключа

В случае идеальной работы пороговых устройств и трансформатора каждая из четырех ступеней регулирования обеспечивала бы интервал значений напряжения 198...231 В, а допустимое сетевое напряжение могло бы быть в пределах от 140 до 260 В. Однако на практике необходимо учитывать разброс параметров деталей и узлов и изменение коэффициента передачи трансформатора при изменении его нагрузочного режима. Поэтому у всех трех пороговых устройств интервалы выходного напряжения выбраны зауженными — по выходному напряжению 215 ±10 В (в идеальном случае 215 ±15 В), из-за этого, соответственно, сужается и интервал изменения сетевого напряжения до 160...250 В (рис. 9 5)

При сетевом напряжении менее 185 В напряжения с выпрямителя на диодах VD1 и VD2 недостаточно, чтобы открылось хотя бы одно пороговое устройство — все три стабилитрона закрыты, а положение контактов реле соответствует показанному на схеме.

При входном сетевом напряжении 160 В выходное напряжение будет равно 198 В. Напряжение на нагрузке равно напряжению сети плюс напряжение вольтодобавки, снимаемое с обмоток II и III трансформатора Т1. В интервале сетевого напряжения 185...205 В открыт стабилитрон VD5. При этом вступает в работу второе пороговое устройство. Ток протекает через обмотку реле К1, стабилитрон VD5 и резисторы R4 и R6. Этот ток недостаточен для срабатывания реле К1.

Падение напряжения на резисторе R6 открывает транзистор VT2. В результате этого срабатывает реле К2 и контактами К2.1 переключает обмотки трансформатора так, что теперь источником вольтодобавки служит только обмотка II. При сетевом напряжении в пределах 205...225 В открывается стабилитрон VD3, то есть ток протекает через первое пороговое устройство. Открывается транзистор VT1, вследствие чего закрывается второе пороговое устройство, а значит, и транзистор VT2, реле К2 отпускает якорь. Срабатывает реле К1 и переключает контакты К1.1. При таком состоянии контактов реле ток нагрузки минует обмотки II и III трансформатора, то есть вольтодобавка равна нулю. На нагрузке повторяется сетевое напряжение — 205...225 В.

В интервале сетевого напряжения 225...245 В открывается стабилитрон VD6. Это означает, что вступает в работу третье пороговое устройство и оказываются открытыми оба транзисторных ключа; включены оба реле — К1 и К2. Теперь в цепь тока нагрузки оказывается включенной обмотка III трансформатора Т1, но в про-тивофазе с сетевым напряжением («минусовая» вольтодобавка). На нагрузке в этом случае также будет напряжение в пределах 205...225 В. При сетевом напряжении 250 В выходное напряжение стабилизатора увеличится до 230 В, не превышая допустимого предела 220 В +5%.

Из предыдущего описания видно, что границы напряжения ступеней регулирования определяет напряжение стабилизации стабилитронов, входящих в пороговые устройства. При налаживании границы ступеней регулирования необходимо устанавливать подборкой стабилитронов, которые, как известно, отличаются значительным разбросом напряжения стабилизации.

Если окажется, что подходящего экземпляра подобрать не удается, можно использовать последовательное включение стабилитрона с одним-двумя диодами (в прямом включении). Вместо КС218Ж (VD5) можно использовать стабилитрон КС220Ж. Этот стабилитрон обязательно должен быть двуханодным. Дело в том, что в интервале сетевого напряжения 225...245 В, когда открывается стабилитрон VD6 и оказываются открытыми оба транзисторных ключа, цепь R4, VD5 шунтирует резистор R6 порогового устройства R5, VD6, R6.

Для устранения шунтирующего действия стабилитрон VD5 должен быть двуханодным. Напряжение стабилизации стабилитрона VD5 не должно превышать 20 В. Стабилитрон VD3 следует подбирать из серии КС220Ж (напряжение стабилизации равно 22 В); можно использовать цепь из двух стабилитронов — Д810 и Д811. Стабилитрон КС222Ж (VD6) — на 24 В — можно заменить цепью из стабилитронов Д810 и Д813. Транзисторы в стабилизаторе могут быть любыми из серии КТ3102. Диоды — также любые из указанных серий. Реле К1 и К2 - РЭН34, паспорт ХП4.500.000-01.

Трансформатор выполнен на магнитопроводе OJ150/80-25 из стали Э350 (или Э360), толщина ленты — 0,08 мм. Обмотка I (для номинального напряжения 220 В) должна содержать 2400 витков провода ПЭТВ-2-0,355. Обмотки II и III — одинаковый, по 300 витков провода ПЭТВ-2-0,9 (13,9 В). Налаживать стабилизатор нужно при включенной реальной нагрузке, чтобы была учтена реакция трансформатора Т1 на нагрузку, поскольку коэффициент передачи незначительно уменьшается при переходе от режима холостого хода к режиму полной нагрузки.

При работе только одной обмотки II коэффициент передачи будет меньше, чем на холостом ходу, и еще меньше, когда работают обмотки II и III одновременно. Когда работает только обмотка III, коэффициент передачи близок к режиму холостого хода, так как при этом происходит компенсация потерь из-за «встречного» тока в ней в интервале значений сетевого напряжения 225...250 В. Изменение коэффициента передачи вызывает незначительное — на доли вольта — изменение напряжения включения пороговых устройств. Это небольшое изменение, умноженное на коэффициент трансформации трансформатора Т1, сдвигает пределы выходного напряжения уже на несколько вольт. Вот почему необходимо установку границ ступеней регулирования проводить только с нагрузкой.

radiostorage.net


Смотрите также