Тепловой насос френетта


Тепловой насос Френетта своими руками: устройство, схемы, как сделать самому

Любители мастерить всегда найдут применение собственным силам, терпению и бросовым материалам. Из практически бесплатных комплектующих они запросто соорудят крайне полезную в быту вещь.

Например, смогут сделать эффективный тепловой насос Френетта своими руками, ничего не потратив. Зато пополнят багаж знаний и запас навыков, а это бесценно, ведь правда?

Представленная информация поможет разобраться в принципе действия агрегата. С нашей помощью вы сможете определиться с конструкцией и узнать, как изготавливается модель. Четкие инструкции по производству этого вида теплового насоса окажут действенную помощь самостоятельным домашним мастерам.

Мы приводим практические рекомендации по выпуску производительной самоделки и советы по эксплуатации такого оборудования.

Принцип работы устройства

Тем, кто соприкасался с вопросами экономически выгодного отопления, название “тепловой насос” хорошо знакомо. Особенно в сочетании с терминами типа “земля-вода”, “вода-вода”, или “воздух-вода” и т.п.

Такой тепловой насос с устройством Френетта не имеет практически ничего общего. Кроме названия и конечного результата в виде тепловой энергии, которую в итоге используют для обогрева.

Тепловые насосы, работающие на принципе Карно, очень популярны и как экономически выгодный способ организации отопления, и как экологически безопасная система.

Работа такого комплекса устройств связана с накоплением низкопотенциальной энергии, содержащейся в природных ресурсах (земле, воде, воздухе), и преобразованием ее в тепловую энергию с высоким потенциалом.

Изобретение Евгения Френетта устроено и работает совершенно иначе.

Принцип действия этого прибора основан на использовании тепловой энергии, которая выделяется при трении. В основе конструкции – металлические поверхности, расположенные не вплотную друг к другу, а на некотором расстоянии. Пространство между ними заполняют жидкостью.

Части устройства вращаются относительно друг друга с помощью электромотора, жидкость, находящаяся внутри корпуса и контактирующая с вращающимися элементами, разогревается.

Полученное тепло можно использовать для нагрева теплоносителя. Некоторые источники рекомендуют использовать эту жидкость непосредственно для отопительной системы. Чаще всего к самодельному насосу Френетта присоединяют обычный радиатор.

В качестве теплоносителя системы отопления специалисты настоятельно рекомендуют использовать масло, а не воду.

В процессе работы насоса эта жидкость имеет свойство разогреваться очень сильно. Вода в таких условиях может просто закипеть. Горячий пар в замкнутом пространстве создает избыточное давление, а это обычно приводит к разрыву труб или корпуса. Использовать масло в такой ситуации намного безопаснее, поскольку его температура кипения значительно выше.

Для изготовления теплового насоса Френетта потребуется двигатель, радиатор, несколько труб, стальной дисковый затвор, стальные диски, металлический или пластиковый стержень, металлический цилиндр и гаечный набор (+)

Бытует мнение, что КПД такого теплогенератора превышает 100% и даже может составлять 1000%. С точки зрения физики и математики это не совсем корректное утверждение.

КПД отражает потери энергии, затраченные не на обогрев, а собственно на работу прибора. Скорее, феноменальные утверждения о невероятно высоком КПД насоса Френетта отражают его эффективность, которая действительно впечатляет. Затраты электроэнергии на работу прибора ничтожны, а вот количество полученного в результате тепла весьма ощутимы.

Нагрев теплоносителя до таких же температур с помощью ТЭНа для отопления, например, потребовал бы значительно большего количества электроэнергии, возможно, в десятки раз больше. Бытовой обогреватель при таком расходе электричества даже не нагрелся бы.

Почему же такими приборами не оборудованы все подряд жилые и промышленные помещения? Причины могут быть разными.

Во-первых, вода – более простой и удобный теплоноситель, чем масло. Она не нагревается до таких высоких температур, и устранить последствия протечек воды проще, чем убрать разлитое масло.

Во-вторых, к моменту изобретения насоса Френетта централизованная система отопления уже существовала и успешно функционировала. Ее демонтаж для замены на теплогенераторы обошелся бы слишком дорого и доставил бы массу неудобств, поэтому такой вариант никто всерьез даже не рассматривал. Как говорится, лучшее – враг хорошего.

Рекомендации по использованию прибора

Стоит отметить, что вариации насоса Евгения Френетта с использованием воды в качестве теплоносителя все же существуют. Но обычно это большие промышленные модели, которые используются на специализированных предприятиях.

Работа таких устройств строго контролируется с помощью специальных приборов. Обеспечить подобный уровень безопасности в домашних условиях практически невозможно.

Общая схема промышленного теплогенератора, разработанного хабаровскими учеными: 1 — емкость; 2 — входной патрубок; 3 — выходной патрубок; 4 — водонагреватель; 5 — подшипниковый вал. В качестве теплоносителя используется вода

Самая популярная версия насоса Френетта, в котором в качестве теплоносителя используется вода, а не масло, это устройство, разработанное учеными из Хабаровска: Назыровой Натальей Ивановной, Леоновым Михаилом Павловичем и Сярг Александром Васильевичем. В этой грибовидной конструкции вода специально доводится до кипения и превращается в пар.

Затем используется реактивная сила пара, чтобы повысить скорость перемещения жидкого теплоносителя по каналам насоса до 135 м/мин. В результате затраты энергии на перемещение теплоносителя минимальны, а отдача в виде тепловой энергии очень высокая.

Однако такой агрегат должен быть исключительно прочным, и его работу следует постоянно контролировать, чтобы избежать аварии.

Что же делать, если с помощью насоса Френетта предполагается организовать обогрев большого помещения или целого дома? Вода – традиционный теплоноситель, большинство отопительных систем рассчитаны именно на него. Да и заполнение целой отопительной системы подходящим жидким маслом может оказаться делом затратным.

Решается этот вопрос очень просто. Нужно дополнительно соорудить обычный теплообменник, в котором разогретое масло будет обогревать воду, циркулирующую по отопительной системе. Некоторое количество тепла будет при этом потеряно, но общий эффект останется достаточно ощутимым.

Тепловой насос Френетта можно успешно использовать в сочетании с системами водяного теплого пола. Но вместо воды в трубы нужно залить жидкое масло

Интересной идеей может стать использование насоса Френетта в сочетании с системой теплого пола. Теплоноситель при этом пускают по узким пластиковым трубам, уложенным в бетонную стяжку.

Функционирует такая система обогрева так же, как и обычный водяной теплый пол. Разумеется, проект этого типа можно реализовать только в частном доме, поскольку для высотных многоквартирных домов разрешается использовать исключительно электрический теплый пол.

Практичный и удобный способ применения такого прибора – отопление небольшого помещения: гаража, сарая, мастерской и т.п. Насос Френетта позволяет эффективно и быстро решить проблему автономного отопления в таких местах.

Затраты электроэнергии для его работы невелики по сравнению с получаемым при этом тепловым эффектом, а соорудить такой агрегат не сложно из самых простых материалов.

Варианты конструкции насоса Френетта

Евгений Френетт не только изобрел устройство, названное его именем, но и неоднократно его усовершенствовал, придумывая все новые, более эффективные варианты прибора.

В самом первом насосе, который изобретатель запатентовал в 1977 году, были использованы только два цилиндра:

  • наружный – полый цилиндр больше диаметром и находится в статичном состоянии
  • внутренний – диаметр емкости немного меньше, чем размеры полости наружного цилиндра.

В получившееся узкое пространство между стенками двух цилиндров изобретатель залил жидкое масло.  Разумеется, та часть конструкции, в которой находился этот жидкий теплоноситель, была тщательно заделана, чтобы не допустить протечек масла.

Это схема самого первого варианта теплового насоса Френетта. Вращающийся вал расположен горизонтально, теплоноситель помещен в узкое пространство между двумя рабочими цилиндрами (+)

Внутренний цилиндр соединяют с валом электродвигателя таким образом, чтобы обеспечить его быстрое вращение относительно неподвижного большого цилиндра. На противоположном торце конструкции был помещен вентилятор с крыльчаткой.

Во время работы масло разогревалось и передавало тепло воздуху, окружающему устройство. Вентилятор позволял быстро распространить теплый воздух по всему объему помещения.

Поскольку нагревалась эта конструкция довольно сильно, ради удобного и безопасного использования конструкция была спрятана в защитный корпус. Разумеется, в корпусе были сделаны отверстия для циркуляции воздуха.

Полезным дополнением к конструкции стал термостат, с помощью которого работу насоса Френетта можно было автоматизировать до некоторой степени.

Центральная ось в такой модели теплового насоса расположена вертикально. Двигатель находится внизу, затем установлены вложенные друг в друга цилиндры, а сверху находится вентилятор. Позднее появилась модель с горизонтальным расположением центральной оси.

Модель теплового насоса Френетта с горизонтально ориентированным вращающимся валом была использована вместе с радиатором отопления, внутри которого циркулировало нагретое масло (+)

Именно такое устройство впервые было использовано в сочетании не с вентилятором, а с радиатором отопления. Двигатель помещен сбоку, а вал ротора проходит через вращающийся барабан и выходит наружу.

В устройстве этого типа вентилятор отсутствует. Теплоноситель из насоса по трубам перемещается в радиатор. Подобным же образом нагретое масло можно вывести и на другой теплообменник или же прямо в трубы отопления.

Позднее конструкция теплового насоса френетта была существенно изменена. Вал ротора по-прежнему остался в горизонтальном положении, а вот внутренняя часть была сделана из двух вращающихся барабанов и помещенной между ними крыльчатки. В качестве теплоносителя здесь снова используется жидкое масло.

В этом варианте теплового насоса Френетта два цилидра вращаются рядом, они разделены крыльчаткой особой конструкции из очень прочного металла (+)

При вращении этой конструкции масло дополнительно нагревается, поскольку проходит через специальные отверстия, сделанные в крыльчатке, а затем проникает в узкую полость между стенками корпуса насоса и его ротором. Таким образом, эффективность насоса Френетта была существенно повышена.

По краям крыльчатки для теплового насоса Френетта сделаны небольшие отверстия. Теплоноситель быстро и эффективно нагревается, проходя через них (+)

Однако стоит отметить, что для изготовления в домашних условиях этот тип насоса не слишком подходит. Для начала понадобится найти достоверные чертежи или рассчитать конструкцию самостоятельно, а это под силу только опытному инженеру.

Затем понадобится найти особую крыльчатку с отверстиями подходящего размера. Этот элемент теплового насоса работает при повышенных нагрузках, поэтому он должен быть выполнен из очень прочных материалов.

Самостоятельное изготовление устройства

Обзор вариантов устройства насоса Френетта позволяет понять, что принципы его работы с той или иной долей эффективности могут быть использованы в конструкциях различного типа и вида. Основная идея остается прежней: узкое пространство между элементами из металла, заполненное маслом, и вращение с помощью электродвигателя.

На схеме представлен вариант теплового насоса Френетта, который обычно используется для самостоятельного изготовления устройства. Основа конструкции – металлические диски, разделенные гайками (+)

В домашних условиях чаще всего изготавливают насос Френетта, состоящий из ряда металлических пластин, разделенных узким просветом.

Чтобы изготовить такое устройство надо подготовить необходимые материалы:

  • полый цилиндр из металла;
  • набор одинаковых стальных дисков с отверстием по центру;
  • набор гаек высотой 6 мм;
  • стальной стержень с резьбой:
  • электродвигатель с удлиненным валом;
  • подшипник;
  • радиатор отопления;
  • соединительные трубы.

Размеры насоса могут быть больше или меньше. Но расстояние между дисками следует выдержать точно – 6 мм. В качестве разделителей используются стандартные гайки, а стальной стержень является центром конструкции.

Его толщина должна соответствовать диаметру гайки. Если стержня с резьбой под рукой не оказалось, ее придется просто нарезать.

Металлические диски для теплового насоса Френетта должны быть чуть меньше диаметра цилиндрического корпуса, чтобы обеспечить свободное вращение и борлее эффективный нагрев теплоносителя

Очевидно, что и отверстие в дисках должно быть таким, чтобы их можно было свободно надеть на осевой стержень. Наружный диаметр дисков должен быть меньше корпуса на несколько миллиметров. Если готовых элементов под рукой не оказалось, диски вырезают самостоятельно из листового металла или поручают эту работу токарю.

Стальные диски для теплового насоса Френетта можно вырезать в домашних условиях, если в наличии имеется подходящее оборудование

Цилиндрический корпус можно сделать из старой металлической емкости подходящей конфигурации или же сварить из металла. Подойдет и обрезок широкой металлической трубы.

К торцам цилиндра приваривают стенки. Корпус должен быть герметичным, чтобы масло не протекало. В верхнем и нижнем торце корпуса следует сделать дополнительные отверстия: для входа и выхода труб отопления, ведущих к радиатору.

Разумеется, все места соединения труб следует загерметизировать. Для резьбовых соединений используют специальные уплотнители: ФУМ-ленту, лен и т.п. Если решено использовать полипропиленовые трубы, понадобятся специальные фитинги и, возможно, паяльник для монтажа таких труб.

Для работы насоса Френетта высокопроизводительный электродвигатель не нужен. Подойдет устройство, снятое со старой или сломанной бытовой техники, например, с обычного вентилятора.

Главное назначение электродвигателя – вращать вал. Чрезмерно быстрое вращение может привести к некорректной работе устройства. Чем быстрее вращается конструкция, тем сильнее нагревается теплоноситель.

Небольшой двигатель для вращения вала теплового насоса Френетта можно снять с испорченной бытовой техники или приобрести в магазине

Чтобы стержень вращался свободно, нужен подходящий подшипник стандартных размеров. Когда все элементы подготовлены, можно начинать сборку устройства. Сначала на нижнюю часть внутри корпуса устанавливают центральную ось с подшипником. Затем на ось навинчивают разделительную гайку, затем надевают диск, снова – гайку, снова – диск и т.д.

Диски с гайками чередуют до тех пор, пока корпус не будет заполнен доверху. Еще на этапе подготовки можно сделать предварительные расчеты по количеству необходимых дисков и гаек.

Нужно к толщине гайки (6 мм) прибавить толщину диска. Высоту корпуса разделить на эту цифру. Полученное число даст сведения о нужном количестве пар “гайка+диск”. Последней устанавливают гайку.

После того, как корпус заполнен этими подвижными элементами, его заполняют жидким маслом. Тип масла значения не имеет, можно взять минеральное, хлопковое, рапсовое или любое другое масло, которое хорошо переносит нагрев и не застывает. После этого конструкцию накрывают верхней крышкой и аккуратно ее заваривают.

К этому моменту трубы радиатора уже обычно присоединены к крышкам. Для удобства во время дальнейшего монтажа и обслуживания устройства на трубах можно поставить два запорных крана. Теперь к валу двигателя нужно присоединить ось теплового насоса.

Систему включают в сеть, проверяют наличие протечек, оценивают характеристики работы устройства.

Изготовленный своими руками тепловой насос Френетта можно подключить к обычному чугунному или биметаллическому радиатору, который обеспечит необходимый отопительный эффект

Если все сделано правильно, ось с дисками начнет раскручиваться, разогревая находящееся внутри устройства масло. Горячий теплоноситель станет перемещаться через верхнее отверстие по трубе в радиатор отопления. Остывшее масло будет возвращаться в корпус теплового насоса по нижней трубе для повторного нагрева.

Чтобы автоматизировать работу системы, можно использовать специальное реле с термодатчиком, который фиксирует нагрев корпуса теплового насоса и отключает двигатель или включает его по мере необходимости. Это позволит предотвратить перегрев системы, поломку электродвигателя и в целом увеличит ресурс работы устройства.

Выводы и полезное видео по теме

Интересный вариант насоса Френетта представлен в этом видеоматериале:

К сожалению, насос Френетта не нашел широкого признания в сфере отопления. Такое устройство промышленного изготовления для бытовых нужд сложно найти в магазинах техники для дома. Но немало народных умельцев успешно использовали наработки этого ученого и применили их в своих жилищах, банях, гаражах и т.п.

Возможно именно вы являетесь тем самым самоделкиным, которому удалось воплотить идею Френетта? Пожалуйста, поделитесь своим опытом – оставляете комментарии к статье и добавляете фото своих изделий. Форма для связи расположена ниже.

sovet-ingenera.com

Тепловой насос Френетта. А если крутить быстрее?

В кругу СЕ сообщества тепловой насос Френетта является достаточно популярным устройством в силу своей простоты и КПД выше 1000%. Но мало кто знает, что сюрпризы и «чудеса», которые способно преподнести данное устройство, совсем не заканчиваются на его чрезвычайно высоком КПД, а пожалуй только начинаются!

Для тех, кто только начинает интересоваться темой свободной и альтернативной энергии, а также для тех, кто по каким-то причинам не успел познакомиться с данным устройством. Напомним, что в конце семидесятых годов прошлого века, американский изобретатель Евгений Френитт (Eugene Frenette) изобрел, собрал рабочий образец и запатентовал тепловой насос с КПД приблизительно равным 1000%. То есть данное устройство вырабатывало в десять раз больше тепла, чем потребляло электроэнергии.

В основе насоса Френетта лежат два цилиндра. Один из цилиндров большего диаметра внутри полый и служит статором, в него вставляется второй цилиндр, который является ротором. Нагрев залитого в большой цилиндр масла происходит за счет вращения цилиндра ротора. На валу, посредством которого приводится в движение ротор, также закреплен лопастной вентилятор, который за счет интенсивной циркуляции воздуха, обеспечивает отток тепла с внешнего цилиндра и нагревание помещения.

Впоследствие изобретатель неоднократно усовершенствовал и модернизировал конструкцию своего теплового насоса. На сегодняшний день известно более десяти различных моделей различающихся между собой конструктивными особенностями, но имеющие неизменный принцип нагрева жидкости, за счет вращения в ней, каких либо деталей. Представим Вашему вниманию наиболее удачную на наш взгляд модификацию теплового насоса Френнета, в основе которой лежит все тот же внешний полый цилиндр, в который также заливается масло, но вращаются в нем плоские, тонкие стальные диски в количестве восьми или более штук. Повышение эффективности в данном устройстве достигнутоза счет того, что масло циркулирует по замкнутой системе, состоящей из самого цилиндра, соединительных трубок и внешнего радиатора, который и является основным теплообменником в данной конструкции.

Хотя данная конструкция практически не содержит в себе скрытых нюансов, секретов и недоговорок автора и имеет очень простую для повторения в домашних условиях конструкцию, повального реплицирования ее мы увы пока не наблюдаем. Приведем Вашему вниманию некоторые из немногочисленных, доступных репликаций: Также есть удачные репликации и среди зарубежных исследователей.

Также Вы без особого труда, при желании сможете найти еще несколько видеороликов показывающих удачные репликации насоса Френетта.

Серьезную работу над исследованием свойств данного устройства провели несколько российских ученых из Хабаровска. Назырова Наталья Ивановна, Сярг Александр Васильевич и Леонов Михаил Павлович. Предлагаемая ими конструкция выглядит следующим образом:

Универсальная генерирующая установка состоит из емкости 1 (фиг. 1), содержащей входной патрубок 2 для подачи холодной воды, выходного патрубка 3 для отвода, по необходимости, горячей воды, пара, кислорода и водорода, водонагревателя 4, опирающегося на подшипниковый узел 5 и приводящегося в высокооборотное вращение.

Водонагреватель 3 (фиг. 2) состоит из корпуса 6 и дисков 7 переменного диаметра, закрепленных гайкой 8 на валу 9.

Корпус 6 может иметь выгнутую (фиг. 2), коническую (фиг. 3а) или вогнутую (фиг. 3б) внутреннюю поверхность, на которой выполнены каналы 10 прямоугольного или квадратного сечения. Каналы 10 могут располагаться радиально (фиг. 4а), с наклоном (фиг. 4б) или криволинейно (фиг. 4в).

Конструкция дисков 7 предусматривает при установке их на вал 9 создание полостей 11, в которых при вращении водонагревателя 3 образуется вакуум при сбросе воды через круговые выходы 12 в каналы 10 корпуса 6.

Вал 9 (фиг. 2) имеет в верхней части полость 13 с диаметром «д», в нижней части которой выполнены отверстия 14, совпадающие числом и расположением с каналами 10 корпуса 6 при установке и закреплении последнего на вал 9.

Универсальная генерирующая установка работает следующим образом. При высокооборотном вращении водонагревателя 3 холодная вода, поступая через входной патрубок 2 в полость 13 вала 9, под действием центробежной силы с большой скоростью и под большим давлением выходит как из полости 13 вала 9 через отверстия 14 по каналам 10 в емкость 1, так и из полостей 11 через выходы 12 в каналы 10, при этом в полостях 11 образуется вакуум.

В моменты прохождения воды по каналам 10 через участки, сопрягаемые с выходами 12, со скоростью 80 — 95 метров в секунду на границах зон высокого давления и вакуума согласно известному явлению, имеющему место при адиабатических процессах, локальная температура в приграничных областях зон достигает 10 000oС и выше, что приводит к разогреву воды к моменту выхода ее из каналов 10 в емкость 1 до 100oС. При увеличении скорости прохождения воды по каналам 10 от  95 до 110 метров в секунду вода полностью превращается в пар. В интервале скоростей прохождения пара по каналам 10 от 110 до 165 метров в секунду происходит его разогрев до 400oС. При прохождении пара по каналам 10 со скоростью более 165 метров в секунду происходит разложение молекул воды на кислород и водород с большим поглощением тепла и понижением температуры водорода и кислорода на выходе из каналов 10 до минус 60oС и ниже.

При движении воды по каналам 10 со скоростью 135 метров в секунду и более за счет реактивной силы, создаваемой паром, выходящим из каналов 10, расположенных с наклоном (фиг. 4б) или криволинейно (фиг. 4в), создается устойчивый режим самогенерации универсальной генерирующей установки, что обеспечивает ее работу без внешнего источника питания.

Из емкости 1, по необходимости, горячая вода, пар или кислород и водород через выходной патрубок 3 поступают соответственно в системы горячего водоснабжения, отопления, пароснабжения, аккумуляции холода или сбора кислорода и водорода.

Наиболее эффективно универсальная генерирующая установка работает при выгнутой форме внутренней поверхности корпуса 6 при отношении максимального диаметра «Д» диска 7 (фиг. 2) к диаметру «д» полости вала 9 как 3:1, при отношении максимального диаметра «Д» диска 7 (фиг. 2) к высоте «Н» как 3:1, при пяти дисках 7, образующих четыре вакуумных зоны 11 с четырьмя круговыми выходами 12 в криволинейные каналы 10 прямоугольного сечения высотой 1,4 миллиметра и шириной 2 миллиметра.

Компоновка универсальной генерирующей установки может быть как горизонтальной, так и вертикальной, с верхним или нижним расположением привода, с установкой на одной или на двух подшипниковых опорах.

Создаваемое водонагревателем избыточное давление воды в емкости 1 позволяет универсальной генерирующей установке выполнять функции циркуляционного насоса.

Ну а теперь приведем некоторые наблюдения:

В соответствии с сущностью изобретения изготавливается универсальная генерирующая установка с числом оборотов до 13000 об/мин. При этом водонагреватель включает в себя: корпус с выгнутой поверхностью нижней стороны и высотой «Н» — 70 мм, с криволинейным расположением каналов в количестве 73 шт., имеющих прямоугольное сечение высотой 1,4 мм и шириной 2,0 мм; 5 дисков с максимальным диаметром нижнего диска «Д» — 210 мм, образующих четыре вакуумные зоны с четырьмя круговыми выходами в каналы; вала с диаметром «д» полости вала — 70 мм. Ожидаемые расчетные параметры изготавливаемой универсальной генерирующей установки:

При 7600 — 8000 оборотах в минуту происходит нагрев воды до 100oС;

При 8000-10000 оборотах в минуту происходит нагрев воды с парообразованием, 100oС и выше;

При 10000-13000 оборотах в минуту происходит парообразование с температурой пара до 400oС;

При 12500 оборотах в минуту устанавливается режим самогенерации.

При 15000 и выше оборотах в минуту происходит разложение воды на кислород и водород с температурой минус 60oС и ниже.

Увлеклись сборкой насоса Френетта и совсем забыли про учебу, не смотря на то, что скоро сессия? Не беда, Вас спасет диплом на заказ! Проффессионалы своего дела сделают быстро и качественно, все то, что не успели сделать Вы.

zaryad.com

Тепловой насос Френетта – принцип работы и возможность самостоятельного изготовления

Стремление вложить поменьше и получить побольше всегда было сильно в нашем народе. Не обошла стороной эта особенность и такую практичную область, как эффективное теплоснабжение. Множество альтернативных установок было изобретено, но лишь единицы нашли реальное применение. В последние несколько лет активно обсуждается конструкция американского изобретателя Eugene Frenette, который в 1977 оформил патент на тепловой насос.

Как утверждают многие интернет-издания, КПД этой чудо машины может достигать 1000%, но так ли это в действительности? Прежде, чем опровергнуть или доказать это, необходимо разобраться в особенностях конструкции теплового насоса Френетта.

Конструкция и принцип работы

Согласно информации из патента № US 4143639 A, выданного 22 августа 1977, в основе работы тепловой установки лежит практическое применение повышения температуры жидкости при ее интенсивном движении.

Конструкция состоит из 2-х цилиндров, установленных друг в друга. Меньший из них находится на валу, который проходит через всю конструкцию и имеет привод к двигателю. Он также заполнен маслом, которое при вращении нагревается о стенки цилиндра. С помощью конвекции воздуха, проходящего через прослойку между цилиндрами передается тепловая энергия. Вентилятор обеспечивает быстрый отток нагретых воздушных масс в помещение.

Судя по сообщениям в прессе, изобретатель неоднократно совершенствовал свою конструкцию. Самый распространенный и известный вариант показан на рисунке.

В новой конструкции был убран вентилятор и внутренний цилиндр. Вместо него на ось установлены стальные диски, которые многократно увеличивают площадь контакта с жидкостью.

Путем вращения достигается эффект нагрева масла, которое из-за возникшего вихревого потока начинает поступать в верхний патрубок и дальше по системе отопления.

Основные элементы эффективности работы данной системы:

  • Закрытая циркуляция теплоносителя.
  • Отсутствие теплообменника как такового.
  • Энергия нагрева превышает в 10 раз мощность приводного двигателя, т.е. КПД – 1000%.

В качестве доказательства приводится совместная работа хабаровских ученых, которые долгие годы совершенствовали конструкцию теплового насоса Френетта.

В качестве основной емкости взята коническая конструкция, внутри которой располагаются диски. При их вращении жидкость начинает стремительное передвижение через отверстия, в результате чего создаются вакуумные зоны. Причем значение температуры в локальных граничных областях может достигать 10000°С.

В зависимости от скорости вращения, жидкость может переходить в следующие состояния:

Обороты двигателя/мин

Описание состоянии жидкости

7600-8000

Вода нагревается до 100°С

8000-10000

Образование пара

10000-13000

Парообразование с температурой 450°С

15000 и выше

Разложение воды на составляющие элементы (кислород и водород) с понижением температуры до -60°С

Звучит очень заманчиво. Тем более, что в сети Интернет можно найти как минимум 1 видеоролик, демонстрирующий рабочую модель теплового насоса Френетта, сделанного своими руками (смотрите в конце статьи).

Факты

При более тщательном анализе предложенных схем возникает целый ряд вопросов, на которые ответа найти невозможно.

Математические выкладки и результаты испытаний

Это является фундаментальной основой при проведении научных и исследовательских работ. В данном случае оперируют лишь показателем КПД, который равен отношению полученной энергии к затраченной. Причем ни одна величина, ни другая не представлена в цифровом отображении.

Мощность двигателя

При увеличении площади контакта жидкости с дисками возрастает коэффициент сопротивления, что требует большей энергии для вращения вала. При средних оборотах стандартных электродвигателей 1000-1500 достичь эффекта нагрева воды без увеличения потребляемой энергии невозможно.

Частота вращения вала

Для третей схемы установки необходимая частота вращения вала должна быть не меньше 7000 об/мин. Такие параметры возможны лишь для специальных установок, которые изготавливаются под заказ. Финансовая целесообразность их закупки равна нулю.

Группа ученых из Хабаровска

Описание 3-е модели теплового насоса является лишь частичными выдержками из патента № RU2204089, выданного в ФГУ ФИПС 26 июля 2001г. В нем упоминается лишь об увеличении эффективности получения горячей воды или пара для коммунальных или промышленных служб. О совершенствовании теплового насоса Френетта не говорится ничего, так же как и о показателях КПД выше 100%. Интересным становится факт, что данный патент потерял свою силу из-за неуплаты взносов.

Вследствие невозможности проверить на практике эффективность теплового насоса Френетта следует с некоторой долей скептицизма относиться к данному изобретению. И если бы оно было по-настоящему действенно, то мы бы уже давно наблюдали выпуск теплового насоса в промышленных масштабах.

dearhouse.ru

Тепловой насос френетта своими руками

Страница не является официальном сайтом компании. Данные взяты из официальных государственных реестров ЕГРЮЛ и ЕГРИП, Государственной автоматизированной системы «Правосудие», Федеральной службы государственной статистики.

Пользуясь этим сайтом, вы полностью принимаете  Политика обработки персональных данных.

2016-2018. Сетевое издание «ОГРН.ОНЛАЙН». Зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзором).

Свидетельство ЭЛ № ФС 77 — 70499 от 03.08.2017. Учредитель Мирзаян Арсен Валерьевич, главный редактор Мирзаян А. В. Адрес редакции: 117574, г.

Москва, ул. Голубинская, д.

Сайт временно недоступен

7к2, 35. Тел.: +7 495 201 23 78. 16+. По всем вопросам обращайтесь на admin@огрн.онлайн

Вступайте в наши группы в соц. сетях

Самостоятельное устройство теплового насоса Френетта (фрикционный обогреватель)

Желая сократить расходы на отопление своего жилища, немало домовладельцев сумели сделать тепловой насос Френетта своими руками.

Как сделать тепловой насос Френетта своими руками

Отдельные энтузиасты, как и оптимистичные создатели рекламных роликов, уверяют, что с помощью улучшенной модели этого агрегата можно достичь КПД в 700, а то и в 1000%. Скептики припоминают основные положения законов термодинамики и сомневаются.

Тем не менее, изобретение Френетта, запатентованное почти четыре десятилетия назад и неоднократно переделанное, успешно функционирует как в виде самодельных устройств, так и в качестве солидных промышленных моделей.

Принцип работы и устройство агрегата

О том, что интенсивное трение приводит к нагреванию поверхностей или сред, хорошо знает любой школьник.

Евгений Френетт создал удивительно простой отопительный прибор, в котором применяется это физическое явление. Изобретатель использовал два цилиндра разного размера.

Меньший по диаметру цилиндр был помещен в полый цилиндр большего диаметра. Между наружной поверхностью первого и внутренней стенкой второго цилиндра было залито масло. Малый цилиндр с одной стороны был подключен к электромотору, а с другой стороны к нему приделали крыльчатку вентилятора.

Это схема теплового насоса, который был запатентован Евгением Френеттом еще в 1977 году.

Позднее модель многократно перерабатывалась и улучшалась

При интенсивном вращении внутреннего цилиндра масло, залитое в устройство, нагревалось до достаточно высоких температур.

Крыльчатка вентилятора позволяла быстро распространять тепло в пространстве помещения. Для удобства использования рабочие цилиндры помещали в корпус с отверстиями для воздуха. Оптимизировать работу устройства можно было с помощью термостата.

Несмотря на похожее название, устройство Френетта и его аналоги не имеют никакого отношения к тепловому насосу, в котором на основании обратного принципа Карно низкопотенциальная энергия окружающей среды (воды, земли, воздуха) преобразуется в тепловую энергию с высоким потенциалом.

Объединяет их только тот факт, что обе системы успешно используются для обогрева жилищ.

Вариации на «Френеттовскую» тему

И сам изобретатель, и его последователи за прошедшие годы неоднократно улучшали тепловой насос френетта. Интересна модель, в которой барабан размещен горизонтально, а по центру системы расположен вал, часть которого размещена снаружи.

Такая конструкция должна быть выполнена очень тщательно, чтобы не допустить просачивания жидкости в местах соединения корпуса с валом.

В этой модели теплового насоса Френетта движущийся вал выведен наружу, а ось вращения перемещена из вертикального положения в горизонтальное

В этом случае вентилятор отсутствует, а теплоноситель из теплового насоса поступает в теплообменник, роль которого может выполнить обычный радиатор отопления или даже система центрального отопления дома.

В этой модели насоса Френетта используются одновременно два барабана, а теплоноситель перемещается по замкнутой системе через теплообменник или радиатор

Позднее был разработан проект теплового насоса Френетта, в котором для разогрева теплоносителя использовалось два барабана.

Система была дополнена крыльчаткой. Под воздействием центробежных сил разогретое масло выбрасывалось из отверстий этой крыльчатки. В результате жидкость попадала в небольшой зазор между ротором и корпусом устройства, что позволяло использовать такой насос с очень высокой эффективностью.

Использование высокопрочной крыльчатки в тепловом насосе Френетта позволяет улучшить производительность устройства.

Теплоноситель выходит через узкие отверстия, расположенные по краям

Наиболее оригинальным вариантом можно считать версию хабаровских ученых Назыровой Натальи Ивановны, Сярг Александра Васильевича и Леонова Михаила Павловича.

Рабочая часть этого устройства внешне напоминает гриб. В качестве рабочей жидкости используется вода, которая достигает кипения и превращается в очень горячий пар. Под действием реактивной силы пара вода движется по каналам устройства со скоростью 135 м/мин, что позволяет обходиться без внешнего источника питания.

Примерная схема универсальной генерирующей установки, разработанной в Хабаровске: 1 — емкость; 2 — входной патрубок; 3 — выходной патрубок; 4 — водонагреватель; 5 — подшипниковый вал

Обратите внимание!

Не стоит пытаться повторить опыт ученых из Хабаровска и создавать подобный универсальный генератор для домашнего использования. Эта конструкция была разработана исключительно для промышленного применения.

Разобравшись в принципах устройства насоса Френетта, любой изобретатель может внести в его конструкцию собственные коррективы, чтобы улучшить работу прибора или упростить его монтаж.

Как самостоятельно изготовить такое устройство?

Самым практичным для обогрева жилищ считается модель теплового насоса Френетта, в которой отсутствует вентилятор и внутренний цилиндр.

Вместо этого используется множество металлических дисков, которые вращаются внутри прибора. Роль теплоносителя выполняет масло, которое поступает в радиатор, охлаждается и затем возвращается в систему.

Изготовить тепловой насос по принципу Евгения Френетта в домашних условиях не сложно. Для этого понадобится:

  • металлический цилиндр;
  • стальные диски;
  • гайки;
  • стальной стержень;
  • небольшой электромотор;
  • трубы;
  • радиатор.

Диаметр стальных дисков должен быть немного меньше диаметра цилиндра, чтобы между стенками корпуса и вращающейся частью был небольшой зазор.

Количество дисков и гаек зависит от размеров конструкции. Диски последовательно нанизывают на стальной стержень, разделяя их гайками.

Обычно используются гайки, высота которых составляет 6 мм. Цилиндр следует заполнить дисками до верха. На стальной стержень наносят наружную резьбу по всей его длине. В корпусе делают два отверстия для теплоносителя. Через верхнее отверстие разогретое масло будет поступать в радиатор, а снизу оно будет возвращаться в систему для дальнейшего нагрева.

В качестве теплоносителя разработчики устройства рекомендуют использовать жидкое масло, а не воду, поскольку температура кипения такого масла в несколько раз выше.

При быстром нагреве вода может превратиться в пар и в системе возникнет избыточное давление, что может привести к повреждению конструкции.

Это примерная схема конструкции теплового насоса Френетта, которую не сложно реализовать с помощью подручных средств и доступных материалов

Для монтажа стержня с резьбой также понадобится подшипник.

Что касается электродвигателя, подойдет любая модель, обеспечивающая достаточное количество оборотов, например, рабочий двигатель от старого вентилятора.

Процесс сборки устройства происходит следующим образом:

  1. В корпусе проделывают два отверстия для труб отопления.
  2. По центру корпуса устанавливают стержень с резьбой.
  3. На резьбу навинчивают гайку, ставят диск, навинчивают следующую гайку и т. д.
  4. Монтаж дисков продолжают до заполнения корпуса.
  5. В систему заливают жидкое масло, например, хлопковое.
  6. Корпус закрывают и фиксируют стержень.
  7. К отверстиям подводят трубы радиатора отопления.
  8. К центральному стержню присоединяют электродвигатель, который обеспечивает вращение.
  9. Включают прибор в сеть и проверяют его работу.

Чтобы улучшить работу теплового насоса этого типа и сделать его использование более удобным и экономичным, рекомендуется применить систему автоматического включения-отключения для двигателя.

Управляется такая система с помощью термодатчика, который крепят прямо на корпус устройства.

Где такой насос можно применить?

Самый простой способ использовать это устройство — превратить его в комнатный обогреватель. Прекрасно подойдет такой тепловой насос и для отопления гаража, бани или другого небольшого помещения. А вот в большом доме народные умельцы предлагают использовать насос Френетта в комплексе с системой «теплый пол».

В этом случае теплоноситель будет циркулировать не по радиатору, а по пластиковым трубам, уложенным в стяжку пола.

Регулировать работу этой системы предполагается с помощью термодатчика, который устанавливается на корпусе насоса, а не монтируется в стяжке, как это делается при монтаже традиционного водяного теплого пола.

Установка нагрева теплоносителя УНТ

В технологических процессах, где производство связано с передачей тепла при высоких температурах могут быть применены установки нагрева теплоносителя. УНТ предназначены для нагрева термального масла и циркуляции его по системе змеевиков, которые расположены внутри емкостей или же резервуаров. Их применение обеспечивает пожарную безопасность процессов связанных с нефтепродуктами, химическими производствами,  полиграфии, металлургии, производстве РТИ.

Свое применение установки нагрева теплоносителя находят при разогреве вязких нефтепродуктов, битума, гудрона, мазута. Эффективно используются в составе оборудования по сливу нефтепродуктов с железнодорожных цистерн и битумовозов.

Кроме того они незаменимы в качестве альтернативных источников  тепловой энергии для битумных хозяйств оборудованных мощными нагревателями работающими на газу или дизельном топливе.

В случае отключения этих нагревателей по независящим от потребителя причинам, он сможет продолжать производственный процесс.

Явное преимущество установок нагрева теплоносителя в сравнении с паровыми котлами  является  высокий процент КПД.

 Установки нагрева теплоносителя обеспечивают равномерный высокотемпературный нагрев достаточно больших площадей, что находит свое применение при  склеивании  материалов, других аналогичных процессов.

ООО «ПРОТОН-М» поставляет УНТ двух типов, которые различаются как конструктивом исполнения, так и способом нагрева теплоносителя:

  1. УНТ СОМАР (Италия), нагрев теплоносителя происходит посредством горелки, которая работает на газу, дизельном топливе или же мазуте.

  2. УНТЭ, нагрев теплоносителя происходит посредством электрических тэнов, мощностью 45 кВт либо 90 кВт.

Нагреватель жидкого теплоносителя Comap (Италия)

Предназначен для обогрева битумного хранилища, посредством нагрева термального масла и циркуляции его по системе змеевиков, расположенных в битумных емкостях.

Тепловой насос Френетта своими руками — чертежи

Нагреватель термального масла представляет собой стальную цилиндрическую обечайку, внутри которой размещены два коаксиально расположенных трубчатых теплообменника образующих трехконтурную камеру сгорания.

  • Теплообменник изготовлен из сертифицированных в системе API труб SCH 40, испытания которых проводятся под давлением 10 бар.

  • В конструкции нагревателя используются горелки фирмы Riello (Италия)

  • Передняя и задняя стенки изготовлены из огнеупорного материала, в случае необходимости демонтируются для проведения чистки и технического обслуживания.

  • В системе циркуляции термального масла предусмотрены фильтры грубой отчистки, предназначенные для улавливания примесей.

  • В конструкции нагревателя термального масла предусмотрена запорная арматура позволяющая производить техническое обслуживание без слива термального масла из системы нагрева.

  • Система контроля давления и температуры термального масла полностью автоматическая, основана на сигналах электронных датчиков давления и температуры на входе и выходи из теплообменника.

    Так же предусмотрены приборы для визуализации показаний температуры и давления термального масла.

  • Пульт управления размещен внутри пылевлагонепроницаемой панели, высокой степени защиты.

  • Автоматическая система управления позволяет задавать время ежедневного запуска и остановки нагревателя жидкого теплоносителя, предусмотрен автоматический таймер поддерживающий циркуляцию теплоносителя после остановки горелки, эта система позволяет максимально эффективно использовать полученную тепловую энергию.

  • В конструкции предусмотрено смотровое окно из закаленного стекла, позволяющее визуально контролировать топочную камеру.

  • Теплоизоляция выполнена из огнеупорного материала толщиной исключающего теплопотери.

Технические характеристики нагревателей жидкого теплоносителя

Возможна поставка нагревателей жидкого теплоносителя следующих моделей:

Модель УНТ

CO 10

CO 15

CO 20

CO 25

CO 30

CO 40

СО 50

Мощность теплового потока.

кВт

Количество термального масла в системе.

л.

Установленная мощность.

Кв

Производительность насоса

Входной / выходной фланец.

мм.

Длинна

мм.

Ширина

мм.

Высота

мм.

Общая масса.

кг.

Мощность горелки

кВт

С учётом газовой горелки.

В комплект поставки УНТ входит:

1.Топка; 2. Горелка Riello 3.Шкаф управления установкой; 4. Блок сигнализации; 5. Труба дымовая;

Поиск Лекций

Тепловой насос Френетта своими руками

В кругу СЕ сообщества тепловой насос Френетта является достаточно популярным устройством в силу своей простоты и КПД выше 1000%.

Но мало кто знает, что сюрпризы и «чудеса», которые способно преподнести данное устройство, совсем не заканчиваются на его чрезвычайно высоком КПД, а пожалуй только начинаются!

Для тех, кто только начинает интересоваться темой свободной и альтернативной энергии, а также для тех, кто по каким-то причинам не успел познакомиться с данным устройством.

Напомним, что в конце семидесятых годов прошлого века, американский изобретатель Евгений Френитт (Eugene Frenette) изобрел, собрал рабочий образец и запатентовал тепловой насос с КПД приблизительно равным 1000%. То есть данное устройство вырабатывало в десять раз больше тепла, чем потребляло электроэнергии.

В основе насоса Френетта лежат два цилиндра. Один из цилиндров большего диаметра внутри полый и служит статором, в него вставляется второй цилиндр, который является ротором.

Нагрев залитого в большой цилиндр масла происходит за счет вращения цилиндра ротора. На валу, посредством которого приводится в движение ротор, также закреплен лопастной вентилятор, который за счет интенсивной циркуляции воздуха, обеспечивает отток тепла с внешнего цилиндра и нагревание помещения.

Впоследствие изобретатель неоднократно усовершенствовал и модернизировал конструкцию своего теплового насоса.

На сегодняшний день известно более десяти различных моделей различающихся между собой конструктивными особенностями, но имеющие неизменный принцип нагрева жидкости, за счет вращения в ней, каких либо деталей.

Представим Вашему вниманию наиболее удачную на наш взгляд модификацию теплового насоса Френнета, в основе которой лежит все тот же внешний полый цилиндр, в который также заливается масло, но вращаются в нем плоские, тонкие стальные диски в количестве восьми или более штук.

Повышение эффективности в данном устройстве достигнутоза счет того, что масло циркулирует по замкнутой системе, состоящей из самого цилиндра, соединительных трубок и внешнего радиатора, который и является основным теплообменником в данной конструкции.

Хотя данная конструкция практически не содержит в себе скрытых нюансов, секретов и недоговорок автора и имеет очень простую для повторения в домашних условиях конструкцию, повального реплицирования ее мы увы пока не наблюдаем.

Приведем Вашему вниманию некоторые из немногочисленных, доступных репликаций:

Также есть удачные репликации и среди зарубежных исследователей. Также Вы без особого труда, при желании сможете найти еще несколько видеороликов показывающих удачные репликации насоса Френетта.

Серьезную работу над исследованием свойств данного устройства провели несколько российских ученых из Хабаровска.

Назырова Наталья Ивановна, Сярг Александр Васильевич и Леонов Михаил Павлович. Предлагаемая ими конструкция выглядит следующим образом:

Универсальная генерирующая установка состоит из емкости 1 (фиг.

1), содержащей входной патрубок 2 для подачи холодной воды, выходного патрубка 3 для отвода, по необходимости, горячей воды, пара, кислорода и водорода, водонагревателя 4, опирающегося на подшипниковый узел 5 и приводящегося в высокооборотное вращение. Водонагреватель 3 (фиг.

2) состоит из корпуса 6 и дисков 7 переменного диаметра, закрепленных гайкой 8 на валу 9.

Корпус 6 может иметь выгнутую (фиг. 2), коническую (фиг. 3а) или вогнутую (фиг. 3б) внутреннюю поверхность, на которой выполнены каналы 10 прямоугольного или квадратного сечения.

Каналы 10 могут располагаться радиально (фиг. 4а), с наклоном (фиг. 4б) или криволинейно (фиг. 4в).

Конструкция дисков 7 предусматривает при установке их на вал 9 создание полостей 11, в которых при вращении водонагревателя 3 образуется вакуум при сбросе воды через круговые выходы 12 в каналы 10 корпуса 6.

Вал 9 (фиг.

2) имеет в верхней части полость 13 с диаметром «д», в нижней части которой выполнены отверстия 14, совпадающие числом и расположением с каналами 10 корпуса 6 при установке и закреплении последнего на вал 9.

Универсальная генерирующая установка работает следующим образом.

При высокооборотном вращении водонагревателя 3 холодная вода, поступая через входной патрубок 2 в полость 13 вала 9, под действием центробежной силы с большой скоростью и под большим давлением выходит как из полости 13 вала 9 через отверстия 14 по каналам 10 в емкость 1, так и из полостей 11 через выходы 12 в каналы 10, при этом в полостях 11 образуется вакуум.

В моменты прохождения воды по каналам 10 через участки, сопрягаемые с выходами 12, со скоростью 80 — 95 метров в секунду на границах зон высокого давления и вакуума согласно известному явлению, имеющему место при адиабатических процессах, локальная температура в приграничных областях зон достигает 10 000oС и выше, что приводит к разогреву воды к моменту выхода ее из каналов 10 в емкость 1 до 100oС.

При увеличении скорости прохождения воды по каналам 10 от 95 до 110 метров в секунду вода полностью превращается в пар. В интервале скоростей прохождения пара по каналам 10 от 110 до 165 метров в секунду происходит его разогрев до 400oС. При прохождении пара по каналам 10 со скоростью более 165 метров в секунду происходит разложение молекул воды на кислород и водород с большим поглощением тепла и понижением температуры водорода и кислорода на выходе из каналов 10 до минус 60oС и ниже.

При движении воды по каналам 10 со скоростью 135 метров в секунду и более за счет реактивной силы, создаваемой паром, выходящим из каналов 10, расположенных с наклоном (фиг.

4б) или криволинейно (фиг.

Тепловой насос Френетта — принцип работы и возможность самостоятельного изготовления

4в), создается устойчивый режим самогенерации универсальной генерирующей установки, что обеспечивает ее работу без внешнего источника питания.

Из емкости 1, по необходимости, горячая вода, пар или кислород и водород через выходной патрубок 3 поступают соответственно в системы горячего водоснабжения, отопления, пароснабжения, аккумуляции холода или сбора кислорода и водорода.

Наиболее эффективно универсальная генерирующая установка работает при выгнутой форме внутренней поверхности корпуса 6 при отношении максимального диаметра «Д» диска 7 (фиг.

2) к диаметру «д» полости вала 9 как 3:1, при отношении максимального диаметра «Д» диска 7 (фиг. 2) к высоте «Н» как 3:1, при пяти дисках 7, образующих четыре вакуумных зоны 11 с четырьмя круговыми выходами 12 в криволинейные каналы 10 прямоугольного сечения высотой 1,4 миллиметра и шириной 2 миллиметра.

Компоновка универсальной генерирующей установки может быть как горизонтальной, так и вертикальной, с верхним или нижним расположением привода, с установкой на одной или на двух подшипниковых опорах.

Создаваемое водонагревателем избыточное давление воды в емкости 1 позволяет универсальной генерирующей установке выполнять функции циркуляционного насоса.

Ну а теперь приведем некоторые наблюдения:

В соответствии с сущностью изобретения изготавливается универсальная генерирующая установка с числом оборотов до 13000 об/мин.

При этом водонагреватель включает в себя: корпус с выгнутой поверхностью нижней стороны и высотой «Н» — 70 мм, с криволинейным расположением каналов в количестве 73 шт., имеющих прямоугольное сечение высотой 1,4 мм и шириной 2,0 мм; 5 дисков с максимальным диаметром нижнего диска «Д» — 210 мм, образующих четыре вакуумные зоны с четырьмя круговыми выходами в каналы; вала с диаметром «д» полости вала — 70 мм.

Ожидаемые расчетные параметры изготавливаемой универсальной генерирующей установки:

При 7600 — 8000 оборотах в минуту происходит нагрев воды до 100oС;

При 8000-10000 оборотах в минуту происходит нагрев воды с парообразованием, 100oС и выше;

При 10000-13000 оборотах в минуту происходит парообразование с температурой пара до 400oС;

При 12500 оборотах в минуту устанавливается режим самогенерации.

При 15000 и выше оборотах в минуту происходит разложение воды на кислород и водород с температурой минус 60oС и ниже

©2015-2018 poisk-ru.ru Все права принадлежать их авторам.

Данный сайт не претендует на авторства, а предоставляет бесплатное использование. Нарушение авторских прав и Нарушение персональных данных

stroitel12.ru


Смотрите также